Chapter 3 Inferences in Regression Analysis

3.1 Inferences concerning β_1

The reason for interest in testing whether or not $\beta_1 = 0$ is that $\beta_1 = 0$ indicates that there is no linear association between y and x.

(i) Sampling distribution of b_1

$$b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})y_i}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \sum_{i=1}^{n} k_i y_i$$

where $k_i = \frac{x_i - \bar{x}}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$, $\sum k_i = \sum \frac{x_i - \bar{x}}{\sum (x_i - \bar{x})^2} = \frac{\sum (x_i - \bar{x})}{\sum (x_i - \bar{x})^2} = 0$, $\sum k_i x_i = \sum \frac{(x_i - \bar{x})x_i}{\sum (x_i - \bar{x})^2} = \frac{\sum (x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2} = 1$.

1. Normality

\[\therefore y_i s’ \text{ are independent normal distribution, and } b_1 \text{ is a linear combination of the } y_i.\]

\[\therefore \text{ The sampling distribution of } b_1 \text{ is normal distribution.}\]

2. Mean

$$E(b_1) = E\{\sum_{i} k_i y_i\} = \sum_{i} k_i E(y_i) = \sum_{i} k_i (\beta_0 + \beta_1 x_i)$$

$$= \beta_0 \sum_{i} k_i + \beta_1 \sum_{i} k_i x_i = \beta_1$$
3. Variance
\[\text{Var}(b_1) = \sigma^2 \{b_1\} = \text{Var}(\sum k_i y_i) = \sum k_i^2 \text{Var}(y_i) = \sum k_i^2 \sigma^2 = \frac{\sigma^2}{\sum (x_i - \bar{x})^2} \]

4. Estimated variance
\[s^2 \{b_1\} = \frac{MSE}{\sum (x_i - \bar{x})^2} = \frac{MSE}{\sum x_i^2 - (\sum x_i)^2 / n} \]

(ii) Sampling distribution of \((b_1 - \beta_1)/s\{b_1\}\)

Theorem 3.1: For the regression model (2.1), \(\text{SSE}/\sigma^2\) is distributed as \(\chi^2(n-2)\), and is independent of \(b_0\) and \(b_1\).

By theorem 3.1,
\[\frac{b_1 - \beta_1}{s\{b_1\}} = \frac{\frac{b_1 - \beta_1}{\sigma\{b_1\}}}{\sqrt{\frac{MSE}{\sum (x_i - \bar{x})^2} \cdot \frac{1}{\sigma\{b_1\}}}} \sim \frac{z}{\sqrt{\frac{\chi^2(n-2)}{n-2}}} = t_{n-2}, \]
where \(\frac{b_1 - \beta_1}{\sigma\{b_1\}} \sim N(0,1)\),

\[s^2 \{b_1\} = \frac{\sum (x_i - \bar{x})^2}{\sum (y_i - \hat{y}_i)^2} = \frac{MSE}{\sigma^2} = \frac{\text{SSE}}{\sigma^2} = \frac{\sum (y_i - \hat{y}_i)^2}{\sigma^2(n-2)} \sim \chi^2(n-2). \]

(iii) Confidence interval for \(\beta_1\)

the \(1 - \alpha\) confidence interval for \(\beta_1\) is \(b_1 \pm t(1-\alpha/2; n-2)s\{b_1\}\)

(iv) Test for \(\beta_1\)

1. Two-sided test
\[H_0 : \beta_1 = 0 \quad \text{vs.} \quad H_1 : \beta_1 \neq 0, \text{ significant level } \alpha \]
Test statistic: \(t^* = \frac{b_1}{s\{b_1\}} \)

If \(|t^*| > t(1 - \alpha/2; n - 2) \), reject \(H_0 \).

2. One-sided test
 \(H_0 : \beta_1 \leq 0 \) vs. \(H_1 : \beta_1 > 0 \), significant level \(\alpha \)

Test statistic: \(t^* = \frac{b_1}{s\{b_1\}} \)

If \(t^* > t(1 - \alpha; n - 2) \), reject \(H_0 \).

3.2 Inferences concerning \(\beta_0 \)

(i) Sampling distribution of \(b_0 \)

\[
b_0 = \frac{1}{n} \left(\sum_{i=1}^{n} y_i - b_1 \sum_{i=1}^{n} x_i \right) = \frac{1}{n} \sum_{i=1}^{n} y_i - \bar{x} \sum_{i=1}^{n} k_i y_i = \sum_{i=1}^{n} \left(\frac{1}{n} - k_i \bar{x} \right) y_i
\]

1. Normality

 \(\therefore \) \(y_i \)'s are independent normal distribution, and \(b_0 \) is a linear combination of the \(y_i \).

 \(\therefore \) The sampling distribution of \(b_0 \) is normal distribution.

2. Mean

\[
E(b_0) = E\{\sum_{i=1}^{n} \left(\frac{1}{n} - k_i \bar{x} \right) y_i \} = \sum_{i=1}^{n} \left(\frac{1}{n} - k_i \bar{x} \right) E(y_i) = \sum_{i=1}^{n} \left(\frac{1}{n} - k_i \bar{x} \right) (\beta_0 + \beta_1 x_i)
\]

\[
= \beta_0 + \beta_1 \bar{x} - \beta_0 \bar{x} \sum_{i=1}^{n} k_i - \beta_1 \bar{x} \sum_{i=1}^{n} k_i x_i = \beta_0
\]

3. Variance

\[
Var(b_0) = \sigma^2 \{b_0\} = Var\{\sum_{i=1}^{n} \left(\frac{1}{n} - k_i \bar{x} \right) y_i \} = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \right]
\]

4. Estimated variance
\[s^2\{b_0\} = MSE\left[\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2} \right] \]

(ii) Sampling distribution of \((b_0 - \beta_0)/s\{b_0\} \)

\[\frac{b_0 - \beta_0}{s\{b_0\}} \sim t_{n-2}. \]

(iii) Confidence interval for \(\beta_0 \)

the \(1 - \alpha \) confidence interval for \(\beta_0 \) is \(b_0 \pm t(1 - \alpha/2; n - 2)s\{b_0\} \)

3.4 Interval estimation of \(E(y_h) \)

Level \(x_h \): may be value occurred in the sample, or some other value of the independent variable within the scope of the model.

\[\Rightarrow \hat{y}_h = b_0 + b_1 x_h \]

(i) Sampling distribution of \(\hat{y}_h \)

1. Normality

\[\therefore \hat{y}_h \text{ is a linear combination of the } y_i. \]

\[\therefore \text{The sampling distribution of } \hat{y}_h \text{ is normal distribution.} \]

2. Mean

\[E(\hat{y}_h) = E(b_0 + b_1 x_h) = E(b_0) + x_h E(b_1) = \beta_0 + \beta_1 x_h \]

\[\Rightarrow \hat{y}_h \text{ is an unbiased estimator of } E(y_h) \]

3. Variance

To first show that \(b_1 \) and \(\bar{y} \) are uncorrelated,

\[Cov(b_1, \bar{y}) = \sigma\{b_1, \bar{y}\} = \sum_n \frac{1}{n} k_i Var(y_i) = \frac{\sigma^2}{n} \sum k_i = 0, \text{ where} \]
\[b_i = \sum_{i=1}^{n} k_i y_i, \quad \bar{y} = \frac{\sum y_i}{n}. \]

\[\Rightarrow \text{Var}(\hat{y}_h) = \sigma^2 \{ \hat{y}_h \} = \text{Var}[\bar{y} + b_1(x_h - \bar{x})] \]

\[= \text{Var}(\bar{y}) + (x_h - \bar{x})^2 \cdot \text{Var}(b_1) = \frac{\sigma^2}{n} + (x_h - \bar{x})^2 \frac{\sigma^2}{\sum(x_i - \bar{x})^2} \]

\[\Rightarrow s^2 \{ \hat{y}_h \} = \text{MSE} \left[\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum(x_i - \bar{x})^2} \right] \]

(ii) Sampling distribution of \((\hat{y}_h - E\{y_h\})/s\{\hat{y}_h\}\) and confidence interval for \(E(y_h)\)

\[\frac{\hat{y}_h - E(y_h)}{s\{\hat{y}_h\}} \sim t_{n-2} \]

The \(1 - \alpha\) confidence interval for \(E(y_h)\) is \(\hat{y}_h \pm t(1-\alpha/2; n-2)s\{\hat{y}_h\}\)

3.8 Analysis of variance (ANOVA)

(i) Partitioning of total sum of squares

Basic Notions:

1. \(y_i - \bar{y}\): the deviation of the \(y_i\) around the mean \(\bar{y}\)

2. \(SSTO = \sum (y_i - \bar{y})^2 = \sum y_i^2 - n\bar{y}^2\): total sum of square

3. \(SSE = \sum (y_i - \hat{y}_i)^2\): error sum of squares

4. \(SSR = \sum (\hat{y}_i - \bar{y})^2 = b_1 \left(\sum x_i y_i - \frac{\sum x_i \sum y_i}{n} \right) \]

\[= b_1 [\sum (x_i - \bar{x}) (y_i - \bar{y})] = b_1^2 \sum (x_i - \bar{x})^2 \]: regression sum of squares

\[\therefore \sum (y_i - \bar{y})^2 = \sum [(\hat{y}_i - \bar{y}) + (y_i - \hat{y}_i)]^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2 \]

\[+ 2 \sum (\hat{y}_i - \bar{y}) (y_i - \hat{y}_i) = \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2, \]
where \[2 \sum (\hat{y}_i - \overline{y})(y_i - \hat{y}_i) = 2 \sum \hat{y}_i(y_i - \hat{y}_i) - 2 \overline{y} \sum (y_i - \hat{y}_i) = 2 \sum e_i \hat{y}_i = 0 \]

\[\therefore SSTO = SSR + SSE \]

(ii) Analysis of variance table

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>E {MS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>SSR = (\sum (\hat{y}_i - \overline{y})^2)</td>
<td>1</td>
<td>MSR = SSR/1</td>
<td>(\sigma^2 + \beta_1^2 \sum (x_i - \overline{x})^2)</td>
</tr>
<tr>
<td>Error</td>
<td>SSE = (\sum (y_i - \hat{y}_i)^2)</td>
<td>(n - 2)</td>
<td>MSE = SSE/(n - 2)</td>
<td>(\sigma^2)</td>
</tr>
<tr>
<td>Total</td>
<td>SSTO = (\sum (y_i - \overline{y})^2)</td>
<td>(n - 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correction for mean</td>
<td>SS (correction for mean) = (n\overline{y}^2)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total, uncorrected</td>
<td>SSTOU = (\sum y_i^2)</td>
<td>(n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

1. SSTOU = \(\sum y_i^2 \) : total uncorrected sum of squares

2. \(df \) of SSE: two degrees of freedom are lost because the two parameters \(\beta_0 \) and \(\beta_1 \) were estimated in obtaining the fitted values \(\hat{y}_i \).

3. \(df \) of SSR: there are two parameters in SSR, but the deviations \(\hat{y}_i - \overline{y} \) must sum to zero; hence one degree of freedom is lost.

4. \(E\{MSR\} = E\{SSR\} = E\{b_1^2 \sum (x_i - \overline{x})^2\} = \sigma^2 + \beta_1^2 \sum (x_i - \overline{x})^2 \),

where \(E(b_1^2) = \text{Var}(b_1) + [E(b_1)]^2 = \frac{\sigma^2}{\sum (x_i - \overline{x})^2} + \beta_1^2 \).

(iii) \(F \) test of \(\beta_1 = 0 \) vs. \(\beta_1 \neq 0 \)

Cochran’s theorem: If \(y_1, \ldots, y_n \) come from the same normal distribution with mean \(\mu \) and variance \(\sigma^2 \), and SSTO is decomposed into \(k \) sums
of squares SS_r, each with degrees of freedom df_r, then the SS_r/σ^2 terms are independent χ^2 variables with df_r degrees of freedom if

$$\sum_{r=1}^k df_r = n - 1.$$

\Rightarrow If $SSTO = SS_1 + SS_2 + \ldots + SS_k$ and $n - 1 = df_1 + df_2 + \ldots + df_k$,

then $SS_r/\sigma^2 \overset{\text{indep.}}{\sim} \chi^2(df_r), \ r = 1 \ldots k$

Under H_0 (i.e., $\beta_1 = 0$), y_1, \ldots, y_n have the same mean $\mu = \beta_0$ and the same variance σ^2, SSE/σ^2 and SSR/σ^2 are independent χ^2 variables (by Cochran’s theorem).

$H_0 : \beta_1 = 0 \ vs. \ H_1 : \beta_1 \neq 0$, significant level α

Test statistic $F^* = \frac{SSR/\sigma^2}{1} \div \frac{SSE/\sigma^2}{n-2} = \frac{MSR}{MSE} \sim F(1, n-2)$,

where $\frac{SSR/\sigma^2}{1} \sim \chi^2(1), \ \frac{SSE/\sigma^2}{n-2} \sim \chi^2(n-2)$.

If $F^* > F(1 - \alpha; 1, n - 2)$, reject H_0.

(v) Equivalence of F test and t test

$H_0 : \beta_1 = 0 \ vs. \ H_1 : \beta_1 \neq 0$, significant level α

t test: $t^* = \frac{b_1}{s\{b_1\}}$

F test: $F^* = \frac{SSR/\sigma^2}{1} \div \frac{SSE/\sigma^2}{n-2} = \frac{b_1^2 \sum (x_i - \bar{x})^2}{MSE} = \left(\frac{b_1}{s\{b_1\}} \right)^2 = (t^*)^2$

where $s^2\{b_1\} = MSE/\sum (x_i - \bar{x})^2$.

$\Rightarrow F(1 - \alpha; 1, n - 2) = [t(1 - \alpha/2; n - 2)]^2$
3.10 Descriptive measures of association between \(x \) and \(y \) in regression model

(i) Coefficient of determination

\(SSTO \): measures the uncertainty in predicting \(y \) when \(x \) is not considered.

\(SSE \): measures the variation in \(y_i \) when \(x_i \) is employed.

A measure of the effect of \(x \) in reducing the variation in \(y \) is

The coefficient of determination:

\[
 r^2 = \frac{SSTO - SSE}{SSTO} = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}
\]

\(\therefore 0 \leq SSE \leq SSTO \) \(\therefore 0 \leq r^2 \leq 1 \)

The interpretation: the proportionate reducing of total variation associated with the use of the independent variable \(x \).

The limiting values of \(r^2 \):

1. If all observations fall on the fitted regression line

\[y_i = \hat{y}_i \Rightarrow SSE = 0 \Rightarrow r^2 = 1 \]

\(\Rightarrow \) the independent variable \(x \) accounts for all variation in the observation \(y \).

2. If the slope of the fitted regression line is \(b_1 = 0 \)

\[\hat{y}_i = \bar{y} \Rightarrow SSE = SSTO \Rightarrow r^2 = 0 \]

\(\Rightarrow \) there is no linear association between \(x \) and \(y \).

(ii) Coefficient of correlation

\[r = \pm \sqrt{r^2}, -1 \leq r \leq 1, \]

where a plus or minus sign is according to the sign of the slope of the fitted regression line.
Note:

The relation between b_1 and r:

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\left[\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2 \right]^{1/2}} = \frac{\sum x_i y_i - \frac{\sum x_i y_i}{n}}{\left[\left(\sum x_i^2 - \frac{(\sum x_i)^2}{n} \right) \left(\sum y_i^2 - \frac{(\sum y_i)^2}{n} \right) \right]^{1/2}}$$

$$\Rightarrow b_1 = \left[\frac{\sum (y_i - \bar{y})^2}{\sum (x_i - \bar{x})^2} \right]^{1/2} \cdot r = \left(\frac{s_y}{s_x} \right) r \quad \text{where} \quad s_y = \left[\sum (y_i - \bar{y})^2 / n - 1 \right]^{1/2} ,$$

$$s_x = \left[\sum (x_i - \bar{x})^2 / n - 1 \right]^{1/2}$$

Note: when $b_1 = 0$, $r = 0$ (implies a horizontal fitted regression line)