Perfectionism and Junior Athlete Burnout: The Mediating Role of Autonomous and Controlled Motivation

Gareth E. Jowett, Andrew P. Hill, Howard K. Hall, and Thomas Curran
York St John University

Certain dimensions of perfectionism appear to place junior athletes at greater risk of burnout. The current study adopted self-determination theory to explain why this is the case. Specifically, as athlete burnout is believed to have a motivational signature that can be described using motivational regulation, the study examined whether autonomous motivation and controlled motivation mediated the perfectionism–burnout relationship. Junior athletes (n = 211, M age = 15.61 years, s = 1.73) completed measures of multidimensional perfectionism, athlete burnout, and motivational regulation. Structural equation modeling revealed that autonomous motivation and controlled motivation partially mediated the relationship between perfectionism and burnout. Perfectionistic concerns had a positive direct and indirect (via controlled motivation) relationship with burnout. In contrast, perfectionistic strivings had a negative direct and indirect (via autonomous motivation) relationship with burnout. The findings suggest that perfectionistic concerns encompass a pattern of motivational regulation, which contributes to the occurrence of athlete burnout, whereas perfectionistic strivings encompass a pattern of motivational regulation inversely associated with athlete burnout.

Keywords: perfectionistic strivings, perfectionistic concerns, self-determination theory, burnout, sport
other two dimensions reflect interpersonal perfectionistic tendencies. These involve perceptions of parental pressure (i.e., unrealistic standards and criticism). Researchers adopting this approach have found that high personal standards tend to be inversely associated with athlete burnout, whereas concern over making mistakes, doubts about action, and parental pressure tend to be positively associated with athlete burnout (Gotwals, 2011; Gould et al., 1996; Lemyre, Hall, & Roberts, 2008). Evidence regarding a need for organization is mixed (see Gotwals, 2011; Gould et al., 1996).

The second approach used to examine the perfectionism–burnout relationship was developed by Hewitt and Flett (1991). They argue that perfectionism can be directed both inward and outward and that it has both intrapersonal and interpersonal qualities, which are reflected in three specific dimensions. Self-oriented perfectionism is an intrapersonal dimension characterized by an internal drive for exceedingly high personal standards and a tendency to criticize oneself harshly. Socially prescribed perfectionism is an interpersonal dimension characterized by perceptions that others hold unrealistically high standards for oneself, are critical, and withhold approval based on attempts to obtain external standards. Researchers have demonstrated that socially prescribed perfectionism is positively associated with athlete burnout (Appleton, Hall, & Hill, 2009; Hill, Hall, Appleton, & Kozub, 2008; Hill, Hall, Appleton, & Murray, 2010), whereas self-oriented perfectionism has demonstrated a negative association (Appleton et al., 2009; Hill et al., 2008), no association (Hill et al., 2010), and a positive indirect association (Hill et al., 2008) with athlete burnout.

To date, the association between perfectionism and athlete burnout has been examined using the two models of perfectionism independently. However, in response to the emergence of both of these models in sport research, researchers have recently begun to adopt a higher-order approach. The potential integration of the two models is supported by factor analytical studies that suggest that two broad dimensions of perfectionism may account for the dimensions of these models (Bieling, Israeli, & Antony, 2004; Cox, Enns, & Clara, 2002; Frost, Heimberg, Holt, Mattia, & Neubauer, 1993). Perfectionistic strivings subsume personal standards and self-oriented perfectionism, whereas perfectionistic concerns subsume socially prescribed perfectionism, concern over mistakes, and doubts about actions (Dunkley, Blankstein, Halsall, Williams, & Winkworth, 2000). Based on their subdimensions, perfectionistic strivings primarily entail the setting of exacting standards with elements of stringent self-evaluation, whereas perfectionistic concerns primarily entail a commitment to exacting standards owing to perceived expectations of significant others, accompanied by overly critical self-evaluation (Dunkley et al., 2000). Adopting a higher-order approach may have some advantages in comparison with using models independently. For example, it includes a wider array of dimensions to help capture perfectionism and avoids disaggregation of individual subdimensions that in isolation may not fully capture perfectionism. Consequently, the approach provides a useful extension to research in this area.

To date, researchers have only conducted a handful of studies using the higher-order approach in sport. They have found perfectionistic concerns to be positively associated with avoidance achievement goals and avoidant coping strategies, but found perfectionistic strivings to be positively associated with approach achievement goals and approach coping strategies (Gaudreau & Antl, 2008; Kaye, Conroy, & Fifer, 2008; Stoebel, Stoll, Salmi, & Tiikkaja, 2009; Zarghmi, Ghamary, Shabani, & Varzaneh, 2010). Differential outcomes of perfectionistic concerns and perfectionistic strivings are also evident in research outside of sport. For example, researchers have found perfectionistic concerns to be positively associated with distress and avoidant coping, as well as more extreme outcomes such as depression and suicide ideation (Dunkley et al., 2000; Enns, Cox, Saareen, & Freeman, 2001). In contrast, perfectionistic strivings have been found to be negatively related to detrimental outcomes, such as general negative affect, self-blame, anxiety, and depression (Bieling et al., 2004; Dunkley, Zuroff, & Blankstein, 2003). In some instances, it has also been found to have more adaptive correlates, such as active coping and conscientiousness (Dunkley et al., 2000; Enns et al., 2001). Although researchers have yet to examine the relationship between the two broad dimensions of perfectionism and athlete burnout, based on current evidence, it would be expected that they...
would also be differentially related to burnout symptoms.

A number of theories have been put forward to explain the occurrence of athlete burnout (see Cresswell & Eklund, 2006 for a review). Self-determination theory (Ryan & Deci, 2002) offers a distinctively organismic approach to understanding burnout and may encompass existing theories (Cresswell & Eklund, 2006). Ryan and Deci (2002) contend that humans possess an innate propensity for personal growth and assimilation through internalization of behavior into the self. The process of internalization can lead to autonomous regulation of behavior, where behavior is fully integrated into the self, or more controlled forms of motivational regulation, where behavior is only partially integrated into the self (Hodgins & Knee, 2002). Within this theory, more autonomous motivational regulation is posited to lead to better psychological adjustment and well-being, whereas more controlled regulation is associated with poorer psychological adjustment and ill-being. This assertion has been supported in a number of empirical studies (see Ryan & Deci, 2007 for review). This theory has recently been used to explain the development of athlete burnout (e.g., Cresswell & Eklund, 2005; Hodge, Lonsdale, & Ng, 2008; Lemyre, Treasure, & Roberts, 2006). From this perspective, athlete burnout is a state of ill-being that is characterized by a distinct pattern of motivational regulation (Cresswell & Eklund, 2005).

Within self-determination theory, multiple forms of motivation are differentiated. Intrinsic regulation is the most autonomous form of motivation and entails participating for inherent knowledge, enjoyment, and stimulation (Pelletier, Fortier, Vallerand, Tuson, Briere, & Blais, 1995). Extrinsic motivation, on the other hand, includes four forms of regulation that differ in the extent to which the behavior is internalized into the self. External regulation can either be more controlled, when based on external controls (extrinsic regulation) or internal contingencies (introjected regulation), or more autonomous, when underpinned by instrumental value (identified regulation) or personal values (integrated regulation). The model also includes amotivation, which reflects a lack of motivation and is indicative of helplessness. Based on this approach to understanding behavior in sport, a number of theorists (e.g., Cresswell & Eklund, 2005; Lemyre et al., 2006) have suggested that athlete burnout may have a motivational “signature” characterized by lower levels of intrinsic regulation and higher levels of amotivation or, when considered across the entire spectrum, lower levels of autonomous motivation (intrinsic, integrated, and identified regulation) and higher levels of controlled motivation (introjected and external regulation) (Lonsdale, Hodge, & Rose, 2009).

Researchers have found support for this approach to describing athlete burnout. In particular, lower intrinsic regulation and higher amotivation appear to be the motivational regulations most strongly related to burnout symptoms (e.g., Cresswell & Eklund, 2005; Raedeke & Smith, 2001). More recent research suggests that other regulations also appear to predict burnout symptoms but to a lesser degree (Lonsdale et al., 2009). Further support for this approach is also provided by research that has used a weighted combination of motivation regulations to create a relative autonomy index. Although this approach has a number of limitations (see Koestner & Losier, 2002), the use of the index has consistently supported the notion that more autonomous motivation is negatively associated with burnout in athletes (Lemyre, Roberts, & Stray-Gundersen, 2007; Lonsdale et al., 2009). Furthermore, shifts from high autonomous motivation to more controlled motivation, assessed using the index, have been found to be positively associated with athlete burnout during the competitive season (Lemyre et al., 2006). Collectively, this research suggests that burnout is more likely when athletes report less autonomous and more controlled motivation for their participation in sport.

Perfectionism, Motivational Regulation, and Athlete Burnout

From a self-determination theory perspective, the association between perfectionistic strivings and perfectionistic concerns with motivational regulation (i.e., lower autonomous motivation and higher controlled motivation) offers an explanation of their possible relationships with athlete burnout. Perfectionistic concerns include subdimensions that are theoretically closely related to controlled motivation. For instance, pursuit of socially prescribed standards to obtain external approval is similar to controlled
forms of regulation such as introjected and external regulation. Direct support for this possibility has been provided by Gaudreau and Antl (2008) in their research with athletes. They found that perfectionistic concerns predicted higher levels of a non–self-determined (i.e., more controlled) motivation composite (extrinsic regulation and amotivation) but was not associated with a self-determined (i.e., more autonomous) motivation composite (intrinsic regulation and identified regulation). In addition, there is evidence that the individual intrapersonal (i.e., concern over mistakes and doubts about action) and interpersonal (i.e., socially prescribed perfectionism) subdimensions of perfectionistic concerns are positively associated with controlled motivation and unrelated to autonomous motivation in sport (McArdle & Duda, 2004; Mouratidis & Michou, 2011).

In comparison with perfectionistic concerns, perfectionistic strivings appear to be more motivationally complex. On one hand, its subdimensions are likely to be associated with a greater sense of personal control and choice that is likely to contribute to more autonomous motivation in sport (Dunkley et al., 2000). On the other hand, perfectionistic strivings may be underpinned by more controlling factors, such as the fulfillment of contingencies of self-worth (DiBartolo, Frost, Chang, LaSota, & Grills, 2004; Hill, Hall, & Appleton, 2011). Consequently, perfectionistic strivings may be associated with higher levels of both autonomous motivation and controlled motivation in sport. This possibility is again supported by Gaudreau and Antl (2008) who found that athletes’ perfectionistic strivings were positively correlated with a composite of self-determined motivation and, to a lesser degree, a composite of non–self-determined motivation. This pattern of relationships has also been found by researchers who have examined the association between personal standards and self-oriented perfectionism subdimensions with composites of autonomous motivation (intrinsic, integrated, and identified regulation) versus controlled motivation (introjected and external regulation), as well as the regulations individually (McArdle & Duda, 2004; Mouratidis & Michou, 2011).

In further support of the notion that autonomous motivation and controlled motivation may mediate the perfectionism–burnout relationship, research suggests that the association between perfectionism and other outcomes is typically indirect. For example, Dunkley et al. (2000) found that the association between perfectionistic concerns and distress was mediated by hassles, avoidant coping, and perceived social support. This is also the case in terms of the perfectionism–athlete burnout relationship with multiple indirect pathways being identified that include different achievement motives (validation vs. growth seeking) and coping tendencies (Hill, Hall, & Appleton, 2010; Hill, Hall, Appleton, & Murray, 2010). The pattern of motivation associated with athletes’ perfectionism is an especially likely additional pathway not only because of the theoretical and empirical links between motivation and athlete burnout (Cresswell & Eklund, 2005; Lemyre et al., 2006) but also because recent research suggests that controlled and autonomous motivation may mediate the relationship between perfectionism and other outcomes. In particular, Mouratidis and Michou (2011) recently found that controlled and autonomous motivation mediated the associations between subdimensions of perfectionism and several coping skills in adolescent athletes. Similarly, Gaudreau and Antl (2008) found that non–self-determined (i.e., more controlled) motivation and self-determined (i.e., more autonomous) motivation mediated the association between the broader perfectionism dimensions and situational coping.

The Present Study

In summary, the purpose of the study was to examine the relationship between perfectionistic strivings and perfectionistic concerns with athlete burnout, and whether these relationships were partially mediated by autonomous motivation and controlled motivation. Based on the preceding argument, it was hypothesized that the perfectionistic concerns–burnout relationship would be partially mediated by a positive association with controlled motivation. In contrast, the perfectionistic strivings–burnout relationship would be partially mediated by a positive association with both autonomous motivation and controlled motivation (Figure 1). Partial mediation rather than full mediation was hypothesized owing to evidence of multiple mediators of the perfectionism–athlete burnout relationship (Gaudreau & Antl, 2008; Hill, Hall,
Method

Participants and Procedure

Participants were 211 junior athletes recruited from sports clubs and organizations across northern England. This included 161 male and 50 female, whose mean age was 15.61 years ($s = 1.73$ years). They competed in their sport at club ($n = 45$), academy ($n = 120$), or regional ($n = 46$) level. Sports included football ($n = 105$), cricket ($n = 39$), netball ($n = 38$), and swimming ($n = 29$). On average, participants trained and competed for 12.28 hr per week ($s = 7.47$ hours).

Instruments

Athlete burnout. The Athlete Burnout Questionnaire (ABQ; Raedeke & Smith, 2001) was used in the current study to assess athlete burnout. The ABQ is a 15-item inventory made up of three 5-item subscales: reduced sense of accomplishment (e.g., “I am not achieving much in sport”), perceived emotional and physical exhaustion (e.g., “I feel so tired from my training that I have trouble finding the energy to do other things”), and athlete’s devaluation of his/her sport (e.g., “The effort I spend in sport would be better spent doing other things”). The subscales were measured on a 5-point Likert scale (1 = almost never to 5 = almost always). Evidence has been provided to support the validity and the reliability of the subscales. This includes factor structure, internal consistency ($\alpha \geq .85$), and test–retest reliability ($r \geq .86$) (see Raedeke & Smith, 2001). In the current study, athlete burnout was represented as a latent variable indicated by its three observed subscales. Previous composite reliability estimates in $p_e \geq .75$ (Hill, Hall, & Appleton, 2010) support the utility of this approach.

Sport multidimensional perfectionism. The Sport Multidimensional Perfectionism Scale (SMPS-2; Gotwals & Dunn, 2009) is an adapted sport-specific version of Frost et al. (1990) multidimensional perfectionism scale. The current study used the SMPS-2 7-item personal standards subscale (e.g., “I hate being less than the best at things in my sport”), the 8-item concern over mistakes subscale (e.g., “If I fail in competition, I feel like a failure as a person”), and the 6-item doubts about actions subscale (e.g., “I usually feel unsure about the adequacy of my precompetition practices”). All three subscales were measured on a 5-point Likert scale (1 = strongly disagree to 5 = strongly agree). Evidence has been provided to support the validity and reliability of the scale. This includes factor structure (via multiple exploratory factor analyses) and internal consistency ($\alpha \geq .74$) (see Gotwals & Dunn, 2009; Gotwals, Dunn, Causgrove-Dunn, & Gamache, 2010).
PERFECTIONISM, MOTIVATIONAL REGULATION, AND BURNOUT

Multidimensional perfectionism. The Cox et al. (2002) shortened version of Hewitt and Flett’s (1991) Multidimensional Perfectionism Scale (H-MPS) was used to assess self-oriented perfectionism (e.g., “One of my goals is to be perfect in everything I do.”) and socially prescribed perfectionism (e.g., “People expect nothing less than perfection from me.”). The instructions (“The following items are statements concerning personal characteristics that some people demonstrate when they are training or playing their sport”) and the stem of the instrument were modified (“In my sport . . .”) to account for the potential domain specificity of perfectionism (see Dunn, Gotwals, & Causgrove Dunn, 2005). Each subscale of the shortened H-MPS contains five items measured on a 7-point Likert scale (1 = strongly disagree to 7 = strongly agree). Reliability analyses have supported the internal consistency of the subscales (α ≥ .79). Confirmatory factor analyses have supported the factor structure of the shortened scales, and correlations between the shortened H-MPS and original H-MPS subscales are extremely high (rs ≥ .94) (Cox et al., 2002).

Motivational regulation. The Behavioral Regulation in Sport Questionnaire (BRSQ; Lonsdale, Hodge, & Rose, 2008) was used to assess motivation. The BRSQ includes the stem “I participate in my sport . . .,” and is made up of six 4-item subscales measured on a 7-point Likert scale (1 = strongly disagree to 7 = strongly agree). The subscales included intrinsic motivation (e.g., “because I enjoy it”), integrated regulation (e.g., “because it’s part of who I am”), identified regulation (e.g., “because the benefits of sport are important to me”), introjected regulation (e.g., “because I would feel ashamed if I quit”), external regulation (e.g., “because if I don’t other people will not be pleased with me”), and amotivation (e.g., “but I wonder what’s the point”). Evidence has been provided to support the validity of the measure, as well as the reliability of the subscales, in the form of internal consistency, α ≥ .76, and test–retest reliability (r ≥ .73) (Lonsdale et al., 2008).

Results

Preliminary Analyses

Following the procedure outlined by Tabachnick and Fidell (2007), participants with more than 5% missing data (n = 13) were removed from the analysis. The remaining sample consisted of 118 complete cases and 80 incomplete cases. These incomplete cases displayed a very small amount of missing items (M = 1.71, SD = 0.87, range = 1–4). Owing to the small amount of missing data, these remaining missing values were replaced using the mean of the nonmissing items from the relevant subscale in each individual case (see Graham, Cumsille, & Elek-Fisk, 2003). The univariate and multivariate distribution of data was analyzed following procedures outlined by Tabachnick and Fidell (2007). Five univariate outliers, outside the standardized z score range (±3.29, p < .001), were identified and removed. Similarly, two multivariate outliers, with Mahalanobis distance above χ²[16] = 39.25 (p < .001), were identified and removed. Subsequently, the data were considered approximately univariate normal (absolute skewness M = 0.43, SD = 0.31, SE = 0.18; absolute kurtosis M = 0.37, SD = 0.20, SE = 0.35) and multivariate normal (Mardia’s normalized coefficient = 2.74). Reliability analyses assessing internal consistency of the subscales supported use of the individual subscales (α ≥ .68). Results are displayed in Table 1.

Descriptive Analyses

Means and standard deviations are displayed in Table 1. They indicate that the athletes demonstrated moderate-to-high scores on the subdimensions of perfectionistic strivings and moderate-to-low scores on the subdimensions of perfectionistic concerns. These findings are consistent with Gaudreau and Antl (2008) in demonstrating that junior athletes tend to display higher levels of perfectionistic strivings than perfectionistic concerns. In addition, the athletes’ scores generally reflected a more autonomous pattern of motivational regulation because athletes reported high levels of intrinsic motivation, slightly lower levels of integrated regulation and identified regulation, moderate-to-low levels of introjected regulation and external regulation, and low levels of amotivation. Consistent with previous research with junior athlete samples (e.g., Raedeke & Smith, 2001), the athletes in the current study also displayed moderate-to-low levels of athlete burnout symptoms.
Structural Equation Modeling

Measurement model: Following the two-step procedure outlined by Anderson and Gerbing (1988), confirmatory factor analysis using AMOS 18.0 (AMOS Development Corporation, Crawfordville, Florida, United States of America, Arbuckle, 2009) with maximum likelihood estimation (ML) was used to test the measurement model before testing the structural relationships. ML has advantages over other methods of parameter estimation. For example, ML has demonstrated less biased parameter estimates than asymptotic distribution-free estimation, better theoretical fit than weighted least squares and generalized least squares, and is relatively robust to deviations from normality (Finch, West, & MacKinnon, 1997; Olsson, Foss, Troye, & Howell, 2000; Yuan & Bentler, 1997). The measurement model consisted of five interrelated latent variables including perfectionistic strivings, perfectionistic concerns, autonomous motivation, controlled motivation, and athlete burnout. The same approach to modeling perfectionistic striving and perfectionistic concerns used by Dunkley et al. (2000) was adopted here. Specifically, personal standards and self-oriented perfectionism were used as indicators of perfectionistic strivings, and concern over mistakes, doubts about actions, and socially prescribed perfectionism were indicators of perfectionistic concerns. Autonomous motivation and controlled motivation were modeled in the same manner as Mouratidis and Michou (2011). Intrinsic regulation, integrated regulation, and identified regulation were used as indicators of autonomous motivation, and introjected regulation and external regulation were indicators of controlled motivation. Reduced sense of accomplishment, sport devaluation, and physical and emotional exhaustion were used as indicators of athlete burnout.

Consistent with the recommendation of Byrne (2001), the fit of the measurement model and structural model was assessed using a combination of absolute fit indices - root mean square error of approximation (RMSEA) and standardized root mean square residual (SRMR) - and incremental fit indices - incremental index of fit (IFI) and comparative fit index (CFI). The assessment of model fit is a source of considerable debate with some researchers suggesting that stringent cutoff criteria may be unsuitable (e.g., Marsh, Hau, & Wen, 2004). In accord, criteria were used in the current study that acknowledged the potential for acceptable (χ^2/df ratio < 3.00, IFI and CFI > .90, SRMR < .10, RMSEA < .08) and excellent fit (χ^2/df ratio < 2.00, IFI and CFI > .95, SRMR < .08, RMSEA < .06; Marsh, Hau & Wen, 2004).

Table 1

Descriptive Statistics and Reliability Estimates

<table>
<thead>
<tr>
<th>Variable</th>
<th>Range</th>
<th>M</th>
<th>SD</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athlete burnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced sense of accomplishment</td>
<td>1–5</td>
<td>2.20</td>
<td>0.63</td>
<td>.68</td>
</tr>
<tr>
<td>Emotional and physical exhaustion</td>
<td>1–5</td>
<td>2.41</td>
<td>0.80</td>
<td>.84</td>
</tr>
<tr>
<td>Sport devaluation</td>
<td>1–5</td>
<td>1.79</td>
<td>0.78</td>
<td>.82</td>
</tr>
<tr>
<td>Global burnout</td>
<td>1–5</td>
<td>2.13</td>
<td>0.32</td>
<td>.83</td>
</tr>
<tr>
<td>Perfectionistic strivings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal standards</td>
<td>1–5</td>
<td>3.70</td>
<td>0.65</td>
<td>.80</td>
</tr>
<tr>
<td>Self-oriented perfectionism</td>
<td>1–7</td>
<td>5.61</td>
<td>0.88</td>
<td>.80</td>
</tr>
<tr>
<td>Perfectionistic concerns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concern over mistakes</td>
<td>1–5</td>
<td>3.10</td>
<td>0.71</td>
<td>.80</td>
</tr>
<tr>
<td>Doubts about actions</td>
<td>1–5</td>
<td>2.70</td>
<td>0.74</td>
<td>.78</td>
</tr>
<tr>
<td>Socially prescribed perfectionism</td>
<td>1–7</td>
<td>3.59</td>
<td>1.10</td>
<td>.75</td>
</tr>
<tr>
<td>Autonomous motivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrinsic motivation</td>
<td>1–7</td>
<td>6.06</td>
<td>0.88</td>
<td>.76</td>
</tr>
<tr>
<td>Integrated regulation</td>
<td>1–7</td>
<td>5.63</td>
<td>0.95</td>
<td>.75</td>
</tr>
<tr>
<td>Identified regulation</td>
<td>1–7</td>
<td>5.53</td>
<td>1.00</td>
<td>.72</td>
</tr>
<tr>
<td>Controlled motivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introjected regulation</td>
<td>1–7</td>
<td>3.95</td>
<td>1.65</td>
<td>.81</td>
</tr>
<tr>
<td>External regulation</td>
<td>1–7</td>
<td>3.26</td>
<td>1.57</td>
<td>.84</td>
</tr>
</tbody>
</table>
The results of this analysis indicated that the measurement model provided a poor fit to the data (χ^2/df ratio = 3.45, IFI = .87, CFI = .86, SRMR = .10, RMSEA = .11, 90% CI = .10–.13). Examination of the measurement model revealed autonomous and controlled motivation to be the main source of ill fit in the model. Consequently, a revised model was formulated using an approach adopted by Gaudreau and Antl (2008) to model autonomous motivation and controlled motivation. This was an item-level modeling approach that entailed creating four composite indicators of autonomous motivation and controlled motivation where each composite was formed by summing the first items from each of the relevant motivational regulation subscales. This procedure was repeated using items two, three, and four from each subscale to account for every item. This revised measurement model provided acceptable-to-excellent fit to the observed data (χ^2/df ratio = 2.03, IFI = .94, CFI = .94, SRMR = .07, RMSEA = .07, 90% CI = .06–.09). Standardized factor loadings from indicator variables to relevant latent variables were all significant (personal standards = .83 and self-oriented perfectionism = .77; concern over mistakes = .78, doubts about action = .47, and socially prescribed perfectionism = .71; autonomous motivation indicators = .83, .84, .82, and .77; controlled motivation indicators = .81, .89, .73, and .84; reduced sense of accomplishment = .79; emotional and physical exhaustion = .52; and sport devaluation = .82). In addition, composite reliabilities were calculated and supported the revised measurement model. These are reported in Table 2 along with the error-free correlations.

Structural model: Structural equation modeling using ML was conducted to test the proposed structural relationships between perfectionism, autonomous motivation, controlled motivation, and athlete burnout. Support for the hypothesized model was found as the fit indices exceeded those indicative of acceptable fit (χ^2/df ratio = 2.05, IFI = .94, CFI = .93, SRMR = .07, RMSEA = .07, 90% CI = .059–.089). Path coefficients are shown in Figure 2. Perfectionistic concerns and perfectionistic strivings accounted for 30% of the variance in autonomous motivation and for 37% of the variance in controlled motivation. The combination of perfectionism and the two motivations accounted for 58% of the variance in athlete burnout.

Full versus partial mediation: To test the hypothesis that motivation would partially mediate the perfectionism–athlete burnout relationship, a full mediation model and partial mediation model were compared using a chi-square difference test. The full mediation model includes indirect pathways only. In contrast, the partial mediation model includes both indirect pathways and direct pathways. The results of this comparison indicated that although both models provided adequate fit (full mediation model: χ^2/df ratio = 2.17, IFI = .93, CFI = .92, SRMR = .08, RMSEA = .08, 90% CI = .06–.09; AIC = 320.65; partial mediation model: χ^2/df ratio = 2.05, IFI = .94, CFI = .93, SRMR = .07, RMSEA = .07, 90% CI = .06–.09; Akaike Information Criterion = 308.34), the chi-square difference test indicated that the inclusion of direct paths significantly improved fit: $\Delta \chi^2(3) = 16.31$, $p < .01$. Consequently, the partial mediation model was supported. The final model is displayed in Figure 2.

Assessment of mediation: In a separate analysis, the size and statistical significance of the specific indirect effects of dimensions of per-

Table 2

<table>
<thead>
<tr>
<th>Latent variable</th>
<th>ρ_c</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Perfectionistic concerns</td>
<td>.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Perfectionistic strivings</td>
<td>.78</td>
<td>.58***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Controlled motivation</td>
<td>.80</td>
<td>.61***</td>
<td>.25**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Autonomous motivation</td>
<td>.81</td>
<td>.18</td>
<td>.54***</td>
<td>.17*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Athlete burnout</td>
<td>.76</td>
<td>.44***</td>
<td>-.19*</td>
<td>.41***</td>
<td>-.42***</td>
<td></td>
</tr>
</tbody>
</table>

*p < .05. **p < .01. ***p < .001.
fectionism on athlete burnout via motivation were assessed. To do so, indirect effects were calculated along with their 95% confidence intervals using a distribution of products method in the PRODCLIN program (MacKinnon, Fritz, Williams, & Lockwood, 2007). The specific indirect effect of perfectionistic concerns on athlete burnout via controlled motivation excluded zero and was therefore significant (ab = .15, 95% CI = .05–.26, SE = .06), however, via autonomous motivation included zero and was therefore nonsignificant (ab = .05, 95% CI = −.01 to .13, SE = .03). The specific indirect effect of perfectionistic strivings on athlete burnout via autonomous motivation also excluded zero and was therefore significant (ab = −.22, 95% CI = −.36 to −.11, SE = .06), however, via controlled motivation included zero and was therefore nonsignificant (ab = −.02, 95% CI = −.12 to .07, SE = .05). Consequently, the association between perfectionistic concerns and athlete burnout can be considered to be partially mediated by controlled motivation, whereas the association between perfectionistic strivings and athlete burnout can be considered to be partially mediated by autonomous motivation.

Assessment of Suppression

Comparison between the error-free correlations (see Table 2) and the parameter estimates in the final structural model suggested the presence of suppression. Suppression is evident when an association between a predictor and an outcome is substantially increased or changes direction when another predictor is added to the model (Cohen, Cohen, Aiken, & West, 2003). In the current study, when perfectionistic concerns were controlled for (i.e., included as a predictor of controlled motivation), the significant positive association between perfectionistic strivings and controlled motivation became nonsignificant and negative. In addition, when perfectionistic strivings were controlled for (i.e., included as a predictor of autonomous motivation), the nonsignificant positive association between perfectionistic concerns and autonomous motivation changed in direction. Whether this suppression was significant was assessed using the Sobel (1986) test. This indicated that perfectionistic concerns suppressed the effect of perfectionistic strivings on controlled motivation (z = 2.40, SE = .16, p < .05), and that perfectionistic strivings suppressed the effect of perfectionistic concerns on autonomous motivation (z = 3.95, SE = .09, p < .001). The implications of this suppression for interpretation of the findings are explained in the discussion.

Discussion

The current study had two purposes. The first purpose was to examine the relationships be-

![Figure 2. Final Structural Equation Model: The partial mediating influence of autonomous motivation and controlled motivation on the relationships between higher-order dimensions of perfectionism and athlete burnout. Note. All pathways are standardized, n = 191, Dashed line ns, * p < .05. ** p < .01. *** p < .001.](image)
tween perfectionistic concerns and perfectionistic strivings with athlete burnout. The second purpose was to examine whether autonomous motivation and controlled motivation partially mediated these relationships. It was predicted that perfectionistic concerns would be positively related to athlete burnout. In contrast, it was predicted that perfectionistic strivings would be negatively related to athlete burnout. It was also expected that the perfectionistic concerns–burnout relationship would be partially mediated by a positive association with controlled motivation only. In contrast, it was expected that the perfectionistic strivings–burnout relationship would be partially mediated by a positive association with both autonomous motivation and controlled motivation (Figure 1). The final model generally provided support for the hypotheses. The only exception was that the perfectionistic strivings–burnout relationship was not mediated by controlled motivation. These effects sizes were large and comparable with previous studies investigating other mediators of the perfectionism–athlete burnout relationship (e.g., Hill, Hall, & Appleton, 2010; Hill, Hall, Appleton, & Murray, 2010).

Dimensions of Perfectionism and Athlete Burnout

Perfectionistic concerns and perfectionistic strivings were expected to have a divergent relationship with athlete burnout. This was, in part, expected because these broad dimensions encompass subdimensions that are theoretically and empirically related to burnout in an opposing manner (Gotwals, 2011). By identifying that these findings generalize to broad dimensions, the findings both support and extend previous research examining the perfectionism–athlete burnout relationship. The findings also provide support more broadly for the general proposition that perfectionistic concerns may have considerable psychological costs for athletes, whereas perfectionistic strivings are less problematic (Stoeber & Otto, 2006). Elsewhere, this has been found in relation to other outcomes in sport such as life satisfaction, coping, and achievement goals (Gaudreau & Antl, 2008; Kaye, Conroy, & Fifer, 2008; Zarghmi et al., 2010). The current research suggests that this may also be the case for athlete burnout.

The Mediating Roles of Autonomous and Controlled Motivation

The findings provided support for the mediating roles of autonomous motivation and controlled motivation in the perfectionism–burnout relationship. The relationship between perfectionistic concerns and athlete burnout was partly explained by the prominence of controlled motivation. As was expected, the findings suggest that perfectionistic concerns are primarily characterized by motivation that is only partially internalized into the self (introjected and external regulation). This is consistent with researchers who have reported a similar pattern of relationships among perfectionistic concerns and its subdimensions with motivation regulation and burnout (e.g., Gaudreau & Antl, 2008; Lonsdale et al., 2009). Perfectionistic concerns appear to promote participation that is largely energized by a sense of coercion, external pressure, and internal contingencies. Within self-determination theory, this is likely to contribute to suboptimal functioning and ill-being that includes burnout.

As expected, the relationship between perfectionistic strivings and athlete burnout was partially mediated by higher levels of autonomous motivation. This suggests that perfectionistic strivings may facilitate a greater degree of integration of sport participation into the self (Gaudreau & Thompson, 2010). Unlike perfectionistic concerns, the reasons for sport participation are more adaptive and include enjoyment and personal affinity to sport. Within self-determination theory, this pattern of motivation is thought to contribute to more optimal functioning and well-being, which is the antithesis of burnout. This again supports the wider literature in this area that has typically highlighted the potential for perfectionistic strivings to be unproblematic, and even adaptive, when controlling for perfectionistic concerns (Stoeber & Otto, 2006).

Unexpectedly, the relationship between perfectionistic strivings and athlete burnout was not mediated by a positive association with controlled motivation. Instead, the pathway from perfectionistic strivings to controlled motivation was nonsignificant, and the indirect effect was nonsignificant. Partial mediation via the two motivational pathways was initially hypothesized because the subdimensions of per-
fectionistic strivings have been suggested to elicit a mixed pattern of motivation that includes controlled motivation (DiBartolo et al., 2004; Hill et al., 2011). Moreover, there is also some empirical evidence that suggests that this is the case (e.g., Gaudreau & Antl, 2008; McArdle & Duda, 2004; Mouratidis & Michou, 2011). It is possible that the current finding may be indicative of suppression. Specifically, the error-free correlation between perfectionistic strivings and controlled motivation was small to moderate, positive, and significant. However, following the inclusion of perfectionistic concerns as a predictor in this model, the path coefficient became small, negative, and nonsignificant. A similar effect was evident when comparing the association between perfectionistic concerns and autonomous motivation. These findings highlight the necessity to consider both the overall (unpartialed) and unique (partialed) contributions of perfectionism dimensions. With this in mind, the findings suggest that pure perfectionistic striving may be inversely related to controlled motivation, whereas perfectionistic strivings may be more complex (DiBartolo et al., 2004).

Practical Implications

Given the large effects of perfectionism and motivational regulation on athlete burnout, the findings from the current study have meaningful implications for those who wish to promote positive youth sport experiences. In particular, to avoid disaffection, practitioners should seek to reduce perfectionistic concerns among junior athletes. The current findings suggest that this may have a sizable impact on the sense of coercion and pressure that characterizes the motivation associated with burnout and will allow athletes to continue to enjoy sport and fulfill their athletic potential. Using self-determination theory may offer a means to do so by addressing feelings of contingent self-worth at the heart of perfectionism via basic psychological need satisfaction (cf. Hall, Hill, & Appleton, 2012). Basic psychological needs are also considered central to the development of athlete burnout and autonomous motivation (see Lonsdale et al., 2009). Consequently, encouraging coaches and parents to adopt strategies that support these needs, such as the provision of choice, offering rationales for decisions, acknowledging and valuing athletes’ feelings, holds the potential to impact each part of the process modeled in the current study and safeguard junior participants from burnout.

Limitations and Future Directions

The current study has a number of limitations that should be considered. The approach to modeling the broad dimensions of perfectionism in the current study replicated Dunkley et al. (2000). However, other researchers have included additional subdimensions when modeling broad factors (e.g., Gaudreau & Thompson, 2010; Mallinson & Hill, 2011). Notably, the approach here focuses largely on intrapersonal dimensions. This should be considered when the findings of this study and the findings of others are compared. Similarly, to build directly on previous research, the approach to modeling motivation was based on recent work in this area that has combined individual regulations to indicate autonomous and controlled motivation (Mouratidis & Michou, 2011). A further future direction would be to examine the unique contribution of individual regulations in mediating the perfectionism–burnout relationship.

Another limitation is the reliance on self-report measures. This mono-method bias (or common-method variance) is likely to inflate the relationship among variables and partly explain the large observed effects. Consequently, future research could consider adopting other sources of measurement (e.g., behavioral and observer sources) to assess these relationships. A final noteworthy limitation is the inability of the cross-sectional design used to capture the developmental aspects of the modeled relationships. This is important because the proposed motivational deterioration associated with burnout will be best observed over time (Cresswell & Eklund, 2006). Only one study to date has examined the relationship between perfectionism and burnout longitudinally (Chen, Kee, & Tsai, 2009); consequently, further research of this type is warranted.

Conclusions

The current study adds to the increasing body of research that highlights the role of perfectionism in the development of athlete burnout. It suggests that when considered as higher-order
factors, perfectionistic strivings and perfectionistic concerns have opposing relationships with athlete burnout in a similar manner to when key subdimensions are assessed. In addition, the current findings indicate that divergent motivational pathways can, in part, explain these relationships. When their unique effects are considered, perfectionistic concerns appear to encompass a pattern of motivational regulation that contributes to the occurrence of athlete burnout. In contrast, perfectionistic strivings encompass a pattern of motivational regulation inversely associated with athlete burnout.

References

Mallinson, S. H., & Hill, A. P. (2011). The relationship between multidimensional perfectionism and psychological need thwarting in junior sports par-
PERFECTIONISM, MOTIVATIONAL REGULATION, AND BURNOUT

Participants. *Psychology of Sport and Exercise, 12*, 676–684. doi:10.1016/j.psychsport.2011.05.009

Received February 22, 2012
Revision received June 29, 2012
Accepted July 2, 2012